
~ 1 ~

Dire Wolf Radio Interface Guide

First rough draft - Jan. 2021

There is a surprising amount of confusion about interfacing Dire Wolf with
radios. Perhaps it is because the documentation is scattered in different
places. Here, I have attempted to gather it all together in one place, hopefully
in an easy to use format.

Please share what you have discovered so others can benefit from your
experience. The best way would be to open an issue in the “direwolf-doc”
project (not the normal “direwolf” project) so nothing slips through the cracks.

I’m especially interested in what you found when using soundcards and USB
PTT control built into some modern rigs.

Dire Wolf contains modems used to send Packet Radio & APRS digital data through ordinary voice

transceivers.

Just for fun, you might want to try APRS with acoustic coupling. Place a receiver near your laptop

computer and use the built-in microphone. Transceiver VOX could be used to transmit when the

computer makes a sound. Yes, this actually works, just to prove that it can be done.

A much better solution is to use wires for more predictable results and immunity from ambient sounds.

There are numerous ways to achieve this. If you have been using your computer to run NBEMS (FLdigi,

etc.), PSK-31, WSJT-X (FT8, etc.), RTTY, or SSTV, you probably have the necessary connection already.

Audio & PTT

~ 2 ~

This guide contains information on various types of possible interfaces, configuration examples, and

troubleshooting.

~ 3 ~

Contents

1 The Easy Way... 5

2 Quick Start Guide for USB interfaces with PTT control.. 7

2.1 Linux .. 7

2.2 Windows .. 7

2.3 Other operating systems .. 8

3 Setting proper transmit audio level .. 9

4 Computer Audio .. 10

4.1 Special notes for USB Audio Adapters .. 11

5 Connection to Radio .. 13

6 What goes in between? ... 15

7 PTT .. 17

7.1 Serial Port .. 18

7.2 GPIO .. 21

7.2.1 Configuration - original (sysfs) .. 22

7.2.2 Configuration - new character device API (libgpiod) ... 23

7.3 Hamlib - CAT .. 25

7.3.1 Hamlib PTT Example: Use RTS line of serial port. .. 26

7.4 VOX (Voice Operated Transmit) .. 28

7.5 USB Audio Adapter GPIO - Linux ... 31

7.6 USB Audio Adapter GPIO - Linux ... 33

7.7 USB Audio Adapter GPIO - Windows .. 38

8 Troubleshooting .. 40

8.1 General .. 40

8.2 Not receiving anything ... 41

8.3 Transmitter turns on but no one receives my signal ... 41

8.4 Transmitter says on .. 41

8.5 System crashes when transmitting ... 41

8.6 Permission problem with USB Audio Adapter GPIO .. 42

8.7 Baofeng transmitter stays on ¼ second after PTT released ... 42

~ 4 ~

~ 5 ~

1 The Easy Way

If you don’t have a suitable interface already, the easiest way is to use a USB audio interface specifically

designed for this purpose. It has audio in for receive, audio out for transmit, and PTT control to activate

the transmitter.

NEED PICTURE

Some examples are:

 DINAH https://hamprojects.info/dinah/

 PAUL https://hamprojects.info/paul/

 DRA-30 http://www.masterscommunications.com/products/radio-adapter/dra/dra30.html
 RA-35 http://www.masterscommunications.com/products/radio-adapter/ra35.html

 DMK URI http://www.dmkeng.com/URI_Order_Page.htm

 RB-USB RIM http://www.repeater-builder.com/products/usb-rim-lite.html

I’ve only used DINAH, in the list above, so I can’t vouch for proper operation of the others.

DINAH has a 6 pin mini DIN connector, same as the “data” (external modem) connector found on some

Kenwood, Icom, and Yaesu transceivers. A suitable cable is included. This is ideal for 9600 bps

operation.

 Be sure to cut the JP-3 jumper so the COS signal, from the radio,

does not shut off the transmit audio.

PAUL has the same type of connector, and pinout, found on most traditional TNCs and trackers so you

can use existing or pre made radio-specific TNC cables.

Many of the others were originally intended for ALLSTAR voice over IP and have different connector

styles or pinouts. Check the pinouts carefully if using one of the others.

If you are using a Raspberry Pi, also consider the DRAWS. It sits right on top of the Raspberry Pi and has:

 Two radio interfaces.

 Voltage regulator so Raspberry Pi can be run from 12 volts.

 GPS for precise timing or building a tracker.

 Battery backed real time clock.

https://hamprojects.info/dinah/
https://hamprojects.info/paul/
http://www.masterscommunications.com/products/radio-adapter/dra/dra30.html
http://www.masterscommunications.com/products/radio-adapter/ra35.html
http://www.dmkeng.com/URI_Order_Page.htm
http://www.repeater-builder.com/products/usb-rim-lite.html

~ 6 ~

Visit http://nwdigitalradio.com/draws/ for more information.

http://nwdigitalradio.com/draws/

~ 7 ~

2 Quick Start Guide for USB interfaces with PTT control

This will get you up and running ASAP for the most common case of a single USB audio adapter.

A later section will discuss using multiple audio interfaces so multiple radios can be used.

2.1 Linux

Run the cm108 utility. You should see something like this:

 VID PID Product Sound ADEVICE ADEVICE HID [ptt]
 --- --- ------- ----- ------- ------- ---------
** 0d8c 0012 USB Audio Device /dev/snd/pcmC2D0c plughw:2,0 plughw:2,0 /dev/hidraw0
** 0d8c 0012 USB Audio Device /dev/snd/pcmC2D0p plughw:2,0 plughw:2,0 /dev/hidraw0
** 0d8c 0012 USB Audio Device /dev/snd/controlC2 /dev/hidraw0

** = Can use Audio Adapter GPIO for PTT.

Devices marked with “**” can use CM108/119 GPIO pins for PTT control.

Edit the sample “direwolf.conf” configuration file.

a. Find the ADEVICE line and add the audio device name found above. Example:

ADEVICE plughw:2,0

b. Find the PTT example section, for channel 0, and add this or uncomment an existing line:

PTT CM108

Do not add a specific device path. It will be determined automatically.

2.2 Windows

Run the cm108 utility. You should see something like this:

(need example)

Edit the sample “direwolf.conf” configuration file.

a. Find the ADEVICE line and add the audio device name found above. Example:

ADEVICE USB

~ 8 ~

When direwolf starts up, it will produce a list of the audio devices available. Using the

associated number is not recommended because the number can change as new devices are

added or remove. It is best to use some unique substring of the name listed.

b. Find the PTT example section, for channel 0, and add this or uncomment an existing line:

PTT CM108

Do not add a specific device path. It will be determined automatically if there is only one USB

audio adapter. The multiple adapter case is explained in a later section.

2.3 Other operating systems

CM108/CM119 GPIO PTT is not available for other operating systems such as Mac OSX or BSD Unix.

More complicated cases, such as multiple USB audio adapters, are explained later.

~ 9 ~

3 Setting proper transmit audio level

The optimal peak FM deviation is somewhere around 3 or 3.5 kHz. Obviously if it is too low, you won’t

be heard. If too loud, the audio signal will be distorted, making it less likely to be decoded properly.

You might expect it to clip and become more like a square wave but that is not what happens. Instead

of being a sine wave, the top and bottom start to get jagged like this:

Here is a more extreme case of over-deviation:

Some interesting examples of really terrible signals can be found in A-Closer-Look-at-the-WA8LMF-TNC-

Test-CD.pdf. You don’t want to be included in my next collection of really bad signal examples. More

importantly you probably want others to understand what you are sending.

Most of us don’t have fancy radio test equipment, so how can the FM deviation be set properly?

You should be able to get a reasonably good approximation by ear. Adjust the transmit audio level up

and down while listening on a different radio. It will stop getting louder and sound different at the point

where it starts to distort. Turn it down a little so you can hear a decrease in volume. If you have an

oscilloscope to look at the received audio, that would be more scientific. Notice where it starts to

distort and decrease the amplitude to around ¾ of that.

After you have configured Dire Wolf for your soundcard and PTT method, you can get a continuous test

tone by using “-x” followed by one of these letters on the command line:

 m for the mark tone, typically 1200 Hz.
 s for the space tone, typically 2200 Hz.
 a to alternate between them.

For a multi-radio setup, a radio channel, other than the first, can be specified by putting a number in

there too.

~ 10 ~

4 Computer Audio

Back in the early days of the IBM style personal computer, sound was not a standard feature. It was

later added with “sound cards” that were plugged into the motherboard. Now it is a standard feature

integrated into the system board. You can use the existing internal sound system or add a dedicated

interface for use by the radio. Most often this will be a USB device. The same “sound card” terminology

lives on although it is not a “card” anymore.

Starting in the upper left is an old “sound card” that plugged into the motherboard.

Below that is a USB audio adapter that runs in the 5 to 10 dollar range. It has stereo audio output for

headphones and mono audio input for a microphone. I added the wires sticking out. This is for PTT

control which we will discuss later.

The SignaLink USB is an overgrown version of the USB audio adapter. It also has audio isolation

transformers and a relay to break up the ground between the radio and computer. It also a VOX circuit

that turns on the transmitter when transmit audio is present.

Finally, in the lower right we have a Raspberry Pi (RPi) with the UDRC audio board on top. Rather than

using USB, it uses the special I2S bus designed for digital audio. The round 6 pin connector matches the

“data” connector found on many Kenwood, Icom, and Yaesu transceivers. A newer version of this is

called DRAWS. It has two radio connectors, GPS, real time clock, and a voltage regulator so the RPi can

be run from 12 volts.

DRAWS, and the earlier UDRC (pictured here) are high performance soundcards that fit on top of the

Raspberry Pi. They can use higher audio sampling rates making them ideal for 9600 baud and above.

~ 11 ~

The 6 pin mini-DIN radio connector matches the “data” connectors on many transceivers, making hook

up very easy. For details, see http://nwdigitalradio.com/draws/ and https://nw-digital-

radio.groups.io/g/udrc/wiki/UDRC%E2%84%A2-and-Direwolf-Packet-Modem#Basic-Configuration

A simpler audio board (not shown) with an I2C / SPI interface so it doesn’t tie up a USB port. This would

be especially beneficial with the Pi zero which has only a single USB port that you might want to use for

something else. https://wb7fhc.com/about-the-fe-pi.html

The Raspberry Pi Foundation even produces one of their own.

https://www.raspberrypi.org/products/iqaudio-codec-zero/

4.1 Special notes for USB Audio Adapters

These all have two 3.5mm TRS (tip, ring, sleeve) connectors marked headphone and mic. The

headphone jack is stereo so you will want to use a stereo (3 conductor) cable. If you use a mono (2

conductor) cable, you would be shorting one of the outputs to ground.

The microphone connector is a little less obvious.

Here is a sample diagram for what you might find inside of one of these USB audio adapters:

http://www.qsl.net/om3cph/sb/CM108_DataSheet_v1.6.pdf See second to last page.

It shows the microphone jack tip capacitively coupled to the CM108 chip with 1 µF. The ring has a

microphone bias voltage.

Here is another that is just the opposite: http://www.hardwaresecrets.com/datasheets/CM109.pdf

The tip is a DC bias voltage and the audio input is on the ring.

This http://www.repeater-builder.com/voip/pdf/cm119-datasheet.pdf has both on the ring and the tip

is not connected.

I guess you just need to try both and see what works. If you are not getting any audio input, or it is

extremely weak – only from crosstalk – that might be the problem. The printed circuit board,

mentioned a couple pages later, has a jumper so you can easily try either one.

Both the Syba product mentioned above, and a different one from Adafruit, have the tip and ring

connected together. They have an open circuit voltage of 4.51 volts which drops down to about half

that when connected to ground through a 1.5 k resistor.

 The lesson, here, is that you should use a 3.5 mm stereo (TRS) plug, not

a mono (TR) plug for the microphone input. If you use a mono cable,

http://nwdigitalradio.com/draws/
https://nw-digital-radio.groups.io/g/udrc/wiki/UDRC%E2%84%A2-and-Direwolf-Packet-Modem#Basic-Configuration
https://nw-digital-radio.groups.io/g/udrc/wiki/UDRC%E2%84%A2-and-Direwolf-Packet-Modem#Basic-Configuration
https://wb7fhc.com/about-the-fe-pi.html
https://www.raspberrypi.org/products/iqaudio-codec-zero/
http://www.qsl.net/om3cph/sb/CM108_DataSheet_v1.6.pdf
http://www.hardwaresecrets.com/datasheets/CM109.pdf
http://www.repeater-builder.com/voip/pdf/cm119-datasheet.pdf

~ 12 ~

the longer sleeve on the plug might short the microphone input to

ground.

Finally, you might want to stick a 1 µF capacitor between the receive audio and the microphone input,

due to the DC bias, but I never found it to be necessary.

~ 13 ~

5 Connection to Radio

The major Japanese Ham Radio manufacturers standardized on the same 6 pin mini DIN connector for

use with external modems such as a packet radio TNC. It’s usually labeled “data” when it is really audio.

I would have called it “external modem” but they didn’t ask me for my advice.

Alinco has the equivalent but it uses a different connector style.

Use this if it is available. The microphone and speaker connections are optimized for voice operation

and intentionally introduce distortion which makes it harder for the modem to operate effectively.

VHF/UHF FM transmitters reshape the audio with “pre-emphasis.” This boosts the higher frequencies at

+6 dB per octave. Suppose your modem was switching between 1200 and 2200 Hz tones of the same

amplitude.

The pre-emphasis increases the amplitude of the higher tone by almost a factor of 2.

In the receiver, de-emphasis decreases the amplitude of higher frequencies, again by 6 dB per octave. In

theory they should balance out

~ 14 ~

Frequencies below 300 Hz or so, are eliminated so you don’t hear the CTCSS tones (commonly known as

PL). This is all fine for voice but makes the modem’s job more challenging. Dire Wolf goes to a lot of

effort to compensate for this imbalance for superior decoding performance.

More details in A-Better-APRS-Packet-Demodulator-Part-1-1200-baud.pdf

The most common 1200 bps (bits per second) speed is somewhat tolerant of this distortion but for 9600

you absolutely need to use the special connector which bypasses the pre-emphasis and de-emphasis to

provide a flat wide audio bandwidth.

Trying to use the microphone and speaker connections, for 9600 bps, will be an exercise in futility.

~ 15 ~

6 What goes in between?

There is a wide range of options from air to more involved designs with audio isolation transformers and

an optoisolator for PTT. Others have covered this topic extensively so I will just provide some examples

and links.

This is what I’m using for my digipeater / IGate.

Left: Connections to speaker and Microphone jack of transceiver.

Middle: Interface circuit with a timer to limit transmission time.

It uses the standard 9 pin connector found on most TNCs and trackers so the same

radio-specific cables can be used.

The two LEDs are for Data Carrier Detect (DCD) and the Push to Talk (PTT) signals.

The shape of the board was not intentional. It was just a scrap piece of perfboard left

over from another project.

Right: Raspberry Pi. A model 1 is more than adequate.

At the top is a USB audio adapter. The current software version can handle 3 audio

interfaces at the same time.

Lower left are GPIO connections for PTT and the DCD LED.

~ 16 ~

I usually take the receive audio and connect it directly to the audio input on the computer.

For transmit, I use a couple resistors, such as 10k and 1k, to

TO BE CONTINUED

~ 17 ~

7 PTT

Like other many other Ham Radio “soundcard” applications, Dire Wolf provides a wide variety of

methods to activate your transmitter. It sounds simple but there are many different options and some

require detailed explanation to use them most effectively.

 Serial Port

Back in the previous Century, personal computers had RS-232 serial “com” ports. Using

one of the control lines such as RTS (conveniently called Request to Send) was a popular

method. Serial ports are now about as scarce as hen’s teeth. You can still use this

method by using a USB to serial converter cable. You can also find interfaces which

have a USB-to-serial chip used only to generate the PTT signal.

 GPIO or GPIOD

If you have a single board computer, such as a Raspberry Pi, one of the General Purpose

Input Output (GPIO) pins can be used.

 GPIO pins inside a USB Audio adapter

The C-Media CM108 and CM119 chips are very popular for USB to Audio adapters. They
have GPIO pins that we can use for the PTT signal. This is a very tidy solution because
everything goes through a single USB cable.

 Hamlib - CAT (Computer Aided Transceiver)

Most ham transceivers made in the past 30 years or so, have the ability to be controlled

from a computer. Originally these used RS-232 serial ports but now USB is the norm.

The commands are not standardized so “hamlib” is generally used to deal with all the

different possibilities for various brands and models.

 VOX

The transmitter can be activated automatically when transmit audio is present. Use of

the VOX, built in to some transceivers, is generally a bad idea because it is designed for

voice and keeps the transmitter on much too long after the transmit audio has stopped.

This Dire Wolf Radio Interface Guide, new for release 1.7, gathers scattered information into one place,

goes into more detail than the User Guide, and should make finding answers easier.

~ 18 ~

7.1 Serial Port (not recommended)

Back in the previous Century, personal computers had RS-232 serial “COM” ports. Using one of the

control lines such as RTS (conveniently called Request to Send) was a popular method. Serial ports are

now about as scarce as hen’s teeth. One possible method is to use a USB to serial adapter.

This is NOT a very good approach and not recommended. When a computer is rebooted, the

default state for the RTS status line is usually on. So, if your computer is unexpectedly

rebooted, the RTS control line will cause your transmitter to stay on, annoying other people

and possibly damaging your transmitter.

If using this approach, you should ensure that the transmitter does not stay on for too long.

Many transceivers have a transmit time out option to limit the length of a transmission. You

could also use a hardware timer. An example is shown in the GPIO section.

If you do anything with RS-232 devices, you should get a cable like this with indicator lights built in. It

will save a lot of time and aggravation when troubleshooting. https://www.gearmo.com/shop/usb2-0-

rs-232-serial-adapter-led-indicators/

Don’t connect the RS-232 signal to your transceiver!!! You will need:

 A resistor of about 10k.

 General purpose diode (1N4148, 1N914, etc.) to prevent the base from going too far negative

and damaging the transistor.

 General purpose NPN transistor (2N3904, 2N2222, or whatever you have in your junk box).

https://www.gearmo.com/shop/usb2-0-rs-232-serial-adapter-led-indicators/
https://www.gearmo.com/shop/usb2-0-rs-232-serial-adapter-led-indicators/

~ 19 ~

Some example circuits can be found here:

 https://www.qsl.net/wm2u/interface.html

 http://zs1i.blogspot.com/2010/02/zs1i-soundcard-interface-ii-project.html

 https://kb3kai.com/tnc/soft-tnc.pdf
 http://www.dunmire.org/projects/DigitalCommCenter/soundmodem/mySoundCardInterface.p

ng

To use a serial port (either built-in or a USB to RS232 adapter cable) for PTT control, use an option of this

form in your configuration file, in the appropriate CHANNEL section:

PTT device-name [-]rts-or-dtr [[-]rts-or-dtr]

(The [] indicate something is optional.)

For Windows the device name would be COM1, COM2, etc.

For Linux, the device name would probably be something like

 /dev/ttyS0 or /dev/ttyS1 for a COM port on the PC motherboard, or

 /dev/ttyUSB0 or /dev/ttyUSB1 for a USB-to-RS232 adapter. You would also see this for
transceivers, like the IC-7100, that have a USB-to-serial converter built in.

You can also use the Windows format on Linux. COM1 is converted to /dev/ttyS0, COM1 is

converted to /dev/ttyS1, and so on. Remember this would apply to a COM port on the motherboard

or in a PCI slot. If USB is involved, the names would be different.

Examples:

PTT COM1 RTS

PTT COM1 -DTR

PTT /dev/ttyUSB0 RTS

Normally the higher voltage is used for transmit. Prefix the control line name with “-” to get the

opposite polarity. Some interfaces want RTS and DTR to be driven with opposite polarity to minimize

chances of transmitting at the wrong time. You can specify two control lines with opposite polarity.

Example:

 PTT COM1 -RTS DTR

https://www.qsl.net/wm2u/interface.html
http://zs1i.blogspot.com/2010/02/zs1i-soundcard-interface-ii-project.html
https://kb3kai.com/tnc/soft-tnc.pdf
http://www.dunmire.org/projects/DigitalCommCenter/soundmodem/mySoundCardInterface.png
http://www.dunmire.org/projects/DigitalCommCenter/soundmodem/mySoundCardInterface.png

~ 20 ~

 PTT COM1 RTS -DTR

For the Easy Digi Complete interface, with built-in USB to serial adapter for PTT control, you should

drive both control lines with the same polarity. These are both equivalent:

 PTT COM1 RTS DTR

 PTT COM1 DTR RTS

Alternatively, the RTS and DTR signals from one serial port could control two transmitters. E.g.

 CHANNEL 0

 PTT COM1 RTS

 CHANNEL 1

 PTT COM1 DTR

~ 21 ~

7.2 GPIO

On Linux you can use General Purpose I/O (GPIO) pins if available. This is mostly applicable to a

microprocessor board, such as a Raspberry Pi, BeagleBone, Orange Pi, etc., not a general purpose PC.

 CAUTION! The general purpose input output (GPIO) pins are connected directly

to the CPU chip. There is no buffering or other protection. The interface uses 3.3 volts

and will not tolerate 5 volt signals. Static discharge, from careless handing, could

destroy your Raspberry Pi.

More information on Raspberry Pi GPIO: https://www.raspberrypi.org/documentation/usage/gpio/

There are many GPIO pins. How would you choose an appropriate one? I would try to avoid those with

special functions such as UART, SPI, PWM, or I2C. These are my suggestions for the best choices. Note

that the physical pin number on the connector, and the GPIO number (used by the software), are not

the same.

For the original RPi model 1 (before the “plus” versions):

 P1-11 GPIO 17

 P1-15 GPIO 22

 P1-16 GPIO 23

 P1-18 GPIO 24

 P1-22 GPIO 25

The later models (A+, B+, 2, 3, 4) have a larger connector with additional GPIO pins. Any of the pins

listed above or these new ones would be suitable.

 P1-29 GPIO 5

 P1-31 GPIO 6

 P1-32 GPIO 12

 P1-33 GPIO 13

 P1-35 GPIO 19

 P1-36 GPIO 16

 P1-37 GPIO 26

 P1-38 GPIO 20

 P1-40 GPIO 21

You could simply use a resistor and transistor to Here is a suggested circuit using a CMOS 555 timer

(LMC555, TLC555, ICM7555, etc.) to limit transmissions to about 10 seconds in case something goes

wrong. Don’t try using the original 555 because it needs a minimum of 4.5 volts and we have only 3.3

here. The time can be increased by making the 10 µF capacitor larger. It’s roughly 1 second for each

µF.

https://www.raspberrypi.org/documentation/usage/gpio/

~ 22 ~

One person reported that the timeout did not work properly and the problem was solved by adding a

0.01 µf capacitor from pin 4 to ground. I suspect this was caused by RF, from the transmitter, getting

into the digital circuitry.

You could get by with only a resistor and transistor but a software failure could cause the transmitter to

be stuck on, jamming the radio channel, annoying other people, and possibly damaging the transmitter

from overheating.

Some transceivers have a built-in transmit timeout setting to achieve the same thing.

7.2.1 Configuration - original (sysfs)

Add a PTT GPIO command to each CHANNEL section. Precede the pin number with “-“ to invert the

signal.

PTT GPIO [-]pin-number

Example:

PTT GPIO 25

~ 23 ~

There are more details in the Raspberry-Pi-APRS.pdf document.

Behind the scenes, the GPIO pins have device paths such as /sys/class/gpio/gpio25. You could set the

pin state with a command such as:

echo 1 > /sys/class/gpio/gpio25/value

 You don’t need to know that level of detail; I’m just providing a lead in for the next section.

The sysfs-gpio documentation says it is deprecated and will be removed after 2020. Well, that year has

come and gone. This interface better not disappear because the new method doesn’t work properly on

the Raspberry Pi yet when I’m writing this.

7.2.2 Configuration - new character device API (libgpiod)

(Not released yet until it works properly with Raspberry Pi OS.)

Here are some explanations of the difference:

 https://embeddedbits.org/linux-kernel-gpio-user-space-interface/

https://www.beyondlogic.org/an-introduction-to-chardev-gpio-and-libgpiod-on-the-raspberry-pi/

As of January 2021, it still does not work properly on the Raspberry Pi, with the latest updates. The

author of the second article is using a version not yet incorporated into the latest Raspberry Pi OS. In

April 2021, it does work on the Raspberry Pi. I mention this because you could run into problems with

an outdated operating system.

To use this method, simply use “GPIOD” rather than “GPIO.”

PTT GPIOD [-]pin-number

Example:

PTT GPIOD 25

This is how it is supposed to work.

xxxx

https://embeddedbits.org/linux-kernel-gpio-user-space-interface/
https://www.beyondlogic.org/an-introduction-to-chardev-gpio-and-libgpiod-on-the-raspberry-pi/

~ 24 ~

---- config ----- TO BE COINTINUED,,,,

~ 25 ~

7.3 Hamlib - CAT

Most ham transceivers made in the past 30 years or so, have the ability to be controlled from a

computer. Originally these used RS-232 serial ports but now USB is the norm. The commands are not

standardized so “hamlib” is generally used so each application developer doesn’t have to figure out all

the different possibilities for various brands and models.

Hamlib support is an optional feature. When direwolf starts up, it displays the optional features that

were included when it was built. e.g.

Includes optional support for: gpsd hamlib cm108-ptt

If you don’t see “hamlib” in there, you will need to rebuild it from source.

If the optional feature is enabled, you can also use this form of the PTT configuration:

PTT RIG model port [rate]

Where,

model identifies the type of radio.

A rig number, not a name, is required here.

For example, if you have a Yaesu FT-847, specify 101.

See https://github.com/Hamlib/Hamlib/wiki/Supported-Radios for details.

 Get a list of values by running “rigctl --list”.

 2 is used to communicate with “rigctld.”

 “AUTO” will try to guess what is connected.

port is name of serial port connected to radio.

 In the case where model is 2, this would be a host name/address

 and optional port number. Default port is 4532

rate is an optional serial port rate for CAT control.

 Sometimes you might need to override the hamlib default behavior.

Here is an example of where the serial port data rate had to be set explicitly:

https://groups.io/g/RaspberryPi-4-HamRadio/topic/75478708

https://github.com/Hamlib/Hamlib/wiki/Supported-Radios
https://groups.io/g/RaspberryPi-4-HamRadio/topic/75478708

~ 26 ~

Examples:

 Yeasu FT-817 on /dev/ttyUSB0: PTT RIG 120 /dev/ttyUSB0 9600

 rigctld on localhost: PTT RIG 2 localhost:4532

 Try to guess what is on /dev/ttyS0: PTT RIG AUTO /dev/ttyS0

For more details, see http://sourceforge.net/p/hamlib/wiki/Hamlib/

FAQ: http://sourceforge.net/p/hamlib/wiki/FAQ/

This would be a good place to go with questions: http://sourceforge.net/p/hamlib/discussion/

7.3.1 Hamlib PTT Example: Use RTS line of serial port.

A normal person would not want to use this Rube Goldberg approach because this directly supported by

direwolf. This is just a training exercise to show how it works.

First let’s try it manually. In one terminal window, start up a daemon with the desired configuration.

rigctld -m 1 -p /dev/ttyS0 -P RTS -t 4532

“/dev/ttyS0” is the serial port on the mother board.

“-m 1” is for the “dummy” backend, not some particular type of radio.

“-t 4532” is not really necessary because that is the default port.

In another window,

echo "\set_ptt 1" | nc localhost 4532

http://sourceforge.net/p/hamlib/wiki/Hamlib/
http://sourceforge.net/p/hamlib/wiki/FAQ/
http://sourceforge.net/p/hamlib/discussion/

~ 27 ~

echo "\set_ptt 0" | nc localhost 4532

echo "\set_ptt 1" | nc localhost 4532

echo "\set_ptt 0" | nc localhost 4532

You should observe that the RTS control line changed. If you bought the USB to Serial cable that I

suggested, the built-in indicator lights reveal what is going on. Otherwise, hook up a voltmeter. Next…

rigctl -m 2 -r localhost:4532

T 1

T 0

T 1

T 0

q

“-m 2” means talk to “rigctld.”

“-r localhost:4532” indicates where rigctld is running. You can leave off the “:4532” because that

is the default port. You might also see examples with 127.0.0.1 which is equivalent but obscure and

confusing to those without any networking background. Actually, it seems you can omit the “-r” option

entirely because localhost is the default for rig “model” 2.

Again, we should observe the RTS line of serial port /dev/ttyS0 changing. To use this for PTT, put this in

your Dire Wolf configuration file:

PTT RIG 2 localhost:4532

The “2” is very important. It means communicate with the instance of “rigctld” that we already started

up. In this case it is running on the same host but it could be running on a different computer.

~ 28 ~

7.4 VOX (Voice Operated Transmit)

The transmitter can be activated automatically when transmit audio is present. The SignaLink USB uses

this technique. Be sure to turn the Delay setting to the minimum position so the transmitter turns off

quickly after transmit audio stops.

 Here are some examples of homebrew circuits:

 http://wa8lmf.net/ham/tonekeyer.htm#NEW

 https://sites.google.com/site/kh6tyinterface/

It might be tempting to use the VOX built into your transceiver and avoid the extra circuitry for the PTT

signal. Is this a good idea?

 For APRS, the short answer is NO!

 For connected mode packet, the short answer is NO!!!

First let’s consider the case where we have a wired connection to activate the transmitter. The

transmitter is turned on, we send our digital data as an audio signal, and then turn off the transmitter

when the audio is finished. Another station detects no other signal, waits a random amount of time

(usually less than 1/3 of a second), and starts transmitting.

Wired PTT

My Transmit Audio

Another station

VOX stands for Voice Operated Transmit. It is designed for voice which contains small gaps between

words and sentences. It responds quickly when speech begins so it doesn’t chop off too much from

beginning of the first word. We don’t want the transmitter going on and off for every little gap in

speech so there is a built in delay before turning the transmitter off again. This is usually referred to as

the “VOX delay.” On one popular HT, the default is 500 milliseconds and the minimum setting is 250.

Digital Data as Audio

Digital Data as Audio

http://wa8lmf.net/ham/tonekeyer.htm#NEW
https://sites.google.com/site/kh6tyinterface/

~ 29 ~

Another popular HT doesn’t allow the delay time to be configured and the documentation doesn’t

mention how long it is. It would not be unreasonable to assume they picked something around the

default time for another brand.

Keeping the transmitter on a half second after the sound ends is fine for voice. But what about digital

data? We saw in the previous section that another station waiting for a clear channel, will usually

transmit less than 1/3 second after it no longer hears another digital signal.

My Transmit Audio

 VOX delay

PTT from VOX

Another station

Using VOX in this case might be easier but, it is:

 Inconsiderate of the community:

You are interfering with others by sending a quiet carrier, possibly overpowering other

stations trying to be heard.

 Bad for APRS:

In this case, you will probably miss the beginning of the next station transmitting

because you haven’t switched back to receive yet.

Digital Data as Audio

Digital Data as Audio

~ 30 ~

 REALLY BAD for connected mode packet:

Connected mode uses a rapid back-and-forth exchange to acknowledge that

information was received and retry if something gets lost. It is quite likely that the next

frame is a response to something you sent. If that response frame is lost, your station

will keep trying over again and eventually give up.

My recommendation is to avoid using VOX, built into a transceiver, unless you can be sure the

transmitter will turn off very soon (e.g. less than 50 mSec.) after the audio signal is no longer present. If

you insist on using VOX, be sure the “VOX delay” setting is at the shortest setting.

The SignaLink USB has a built in VOX circuit but it is adjustable into an appropriate range. Turn the delay

down to the minimum (fully counterclockwise). According to the documentation, this should turn off

the transmitter around 15 or 30 milliseconds after the transmit audio has ended.

~ 31 ~

7.5 USB Audio Adapter GPIO - Linux

The C-Media CM108 and CM119 chips are very popular for USB to Audio adapters. They have GPIO pins

that we can use for the PTT signal. This is a very tidy solution because everything goes through a single

USB cable rather than having separate audio and PTT.

The C-Media CM108, CM119, and similar chips, used in many USB-audio adapters, have varying numbers
of general purpose input output (GPIO) pins. These are sometimes connected to push buttons or LEDs.

C-Media
chip
pin

GPIO
number

CM108 CM108AH
CM108B

CM109
CM119
CM119A
CM119B

43 1 X X X

11 2 X X

13 3 X X X

15 4 X X X

16 5 X

17 6 X

20 7 X

22 8 X

Here, I pried open a SYBA USB Audio adapter, which happen to contain a CM119, and soldered wires to
ground and one of the GPIO pins. This signal would then need to go to a resistor and transistor to pull
down the PTT control.

~ 32 ~

Many products use this technique. Some examples:

 DINAH https://hamprojects.info/dinah/

 DMK URI http://www.dmkeng.com/URI_Order_Page.htm

 RB-USB RIM http://www.repeater-builder.com/products/usb-rim-lite.html
 RA-35 http://www.masterscommunications.com/products/radio-adapter/ra35.html

There are several similar homebrew projects:

 http://www.qsl.net/kb9mwr/projects/voip/usbfob-119.pdf

 http://rtpdir.weebly.com/uploads/1/6/8/7/1687703/usbfob.pdf

 http://www.repeater-builder.com/projects/fob/USB-Fob-Construction.pdf

 http://www.egloff.eu/index.php/en/la-technique/interface-audio-usb

GPIO 3 (pin 13) is used in the homebrew designs because it is easier to tack solder a wire to a pin on
the end. All of the commercial products, that I’m aware of, also use the same pin for PTT. It is possible
to specify a different pin, in the configuration file, but you probably won’t need to.

https://hamprojects.info/dinah/
http://www.dmkeng.com/URI_Order_Page.htm
http://www.repeater-builder.com/products/usb-rim-lite.html
http://www.masterscommunications.com/products/radio-adapter/ra35.html
http://www.qsl.net/kb9mwr/projects/voip/usbfob-119.pdf
http://rtpdir.weebly.com/uploads/1/6/8/7/1687703/usbfob.pdf
http://www.repeater-builder.com/projects/fob/USB-Fob-Construction.pdf
http://www.egloff.eu/index.php/en/la-technique/interface-audio-usb

~ 33 ~

7.6 USB Audio Adapter GPIO - Linux

The tricky part is that the single physical USB adapter shows up as separate audio and HID (human
interaction) devices. Dire Wolf includes a utility application, called cm108, to help you make sense of it
all.

This is some of what we see for a single USB Audio Adapter:

VID is Vendor ID. 0d8c is C-Media.
PID is Product ID. This is not a good way to distinguish different chips because it is often programmable.

A single USB audio adapter shows up as multiple sound devices:

 pcmC1D0c Card 1, Device 0, “c” for capture (i.e. input)

 pcmC1D0p Card 1, Device 0, “p” for playback (i.e. output)

 controlC1 Card 1, volume control, etc.

The first ADEVICE column has what you would normally use for ADEVICE in the configuration file. The
“1” and “0” correspond to the “card” and “device”. “Device” is an unfortunate term because it has too
many different meanings. But that is the terminology used by ALSA.

Ignore the second ADEVICE column for now. We will get back to it later.

Finally HID is the corresponding GPIO device in the same chip. There is not a simple relationship
between the names. The same USB audio adapter is Sound Card 1 and HID 3.

In this case, your direwolf configuration file would contain:

ADEVICE plughw:1,0
CHANNEL 0
PTT cm108

When direwolf is started up, important configuration settings are displayed as a help in troubleshooting.

~ 34 ~

It automatically figures out which HID corresponds to the soundcard. You could optionally override the
automatic mapping but you would probably end up “shooting yourself in the foot” as we will see later.
All of the products and homebrew projects, that I have seen, all use GPIO 3 so that is the default if you
don’t specify a different GPIO bit number.

Now let’s add two more USB audio adapters.

Put this in our configuration file to use 3 radios:

ADEVICE plughw:1,0
CHANNEL 0
PTT cm108

ADEVICE1 plughw:3,0
CHANNEL 2
PTT cm108

ADEVICE2 plughw:2,0
CHANNEL 4
PTT cm108

Once again, it automatically matches up the soundcard number with the corresponding HID.

Note that the third USB Audio Adapter does not have a C-Media chip so attempts to use the GPIO pins
will probably fail. I can’t test it to find out. I pried one of the adapters open and the chip was buried
under a blob so there were no pins to probe.

~ 35 ~

Next, we will unplug this keyboard and mouse then reboot. We don’t need them because I’m logging in
with ssh over the network.

What happened?

The soundcards are listed in the same order, but the numbers have changed.

 The soundcard numbers are now 1, 2, 3 rather than 1, 3, 2.

 The HID numbers are now 0, 1, 2 rather than 3, 5, 4.

That’s why you should not specify explicit HID numbers. They change when you add or remove USB
devices and reboot. Let direwolf figure out the relationship.

The soundcard numbers have also changed. Suppose you had

 plughw:3,0 connected to the radio for the APRS frequency.

 plughw:2,0 connected to the radio for the Packet BBS frequency.

After rebooting they have been reversed!

Don’t despair because there is an easy solution.

I’ve only been showing you part of the cm108 utility results. Here is the rest of it

.

Follow the instructions. Copy/paste the last section into /etc/udev/rules.d/85-my-usb-audio.rules then
reboot

We can now turn our attention to the second ADEVICE column.

~ 36 ~

I can now put this in my configuration file, using a name rather than a number which can change.

ADEVICE plughw:Fred,0

The same technique could be used to assign names based on the VID/PID but that would not help with
multiple identical adapters.

Names can be assigned based on serial numbers but these adapters don’t have serial numbers.

So, we are left with assigning names based on the physical USB socket on the computer.

The keyboard will be plugged in again, and the second USB Audio Adapter (PID 000c) removed. After
rebooting again, we see:

Once again, the numbers hav shifted around but the name remains associated with the same USB Audio
Adapter. Or more accurately, the USB socket that it is plugged into.

So for our final experiment, swap the two USB Audio Adapters. We don’t even need to reboot. We see
that the name is associated with the USB socket on the Raspberry Pi, not what is plugged into it.

~ 37 ~

For more information on assigning persistent names by manufacturer, model, or serial number, see
https://github.com/dh1tw/remoteAudio/wiki/Persistent-USB-Mapping-of-Audio-devices-(Linux)

https://github.com/dh1tw/remoteAudio/wiki/Persistent-USB-Mapping-of-Audio-devices-(Linux)

~ 38 ~

7.7 USB Audio Adapter GPIO - Windows

You might find it helpful to read the preceding Linux section first, to compare how these are different.

All of this magic is performed by the “udev” device manager on Linux. The Windows equivalent is
drastically different so an entirely new implementation needs to be created.

At the current time, I know how to get a list of the HIDs and set the GPIO pins but so far have not been
able to figure out how to find the relationship between HID and sound devices in the same package.

I would really like to provide the same completeness and convenience as on Linux, but so far I have not
been able to figure out how to do it. (Hint, hint, to any Windows programming experts.)

Reluctantly I’m providing a half-baked implementation. It should be fine for those using a single USB
Audio Adapter but would be real annoying when trying to use multiple adapters.

First, let’s consider the case of a single USB Audio Adapter.

Your configuration file could contain this:

ADEVICE USB
CHANNEL 0
PTT cm108

There is only a single USB audio device so it all works well.

Things get more complicated when there are multiple USB Audio Adapters.

The good news is that the paths are still there after a reboot.

~ 39 ~

Verify that it is working properly by running cm108 again with the USB Audio HID path on the command

line. E.g.

>cm108 "\\?\hid#vid_0d8c&pid_0012&mi_03#8&2a5a85b6&0&0000#{4d1e55b2-f16f-11cf-

88cb-001111000030}"

0101010101010101010101010

IMPORTANT: The device path has contains characters with special meaning to the command interpreter

so it needs to be enclosed in quotation mark (") characters.

The alternating 0 and 1 are displayed as the PTT control is turned off and on. If you are using an

interface with a PTT LED indicator, it should be alternating between off and on.

If you have a single USB audio adapter, you should be able to simply use this short form in the direwolf

configuration file:

PTT cm108

However, if you are using multiple devices, you will need to explicitly specify the

device path like this:

PTT cm108 "\\?\hid#vid_0d8c&pid_000c&mi_03#8&2edc3781&0&0000#{4d1e55b2-f16f-
11cf-88cb-001111000030}"

~ 40 ~

8 Troubleshooting

8.1 General

The first thing you want to do is look at what direwolf says when it starts up.

The optional features included are listed near the beginning. Example:

Includes optional support for: gpsd hamlib cm108-ptt

If you want to use hamlib, and it is not listed there, you will need to install hamlib then rebuild from

source.

If you want to use a USB audio adapter, with built in PTT control, the “cm108-ptt” optional feature must

appear here.

Next we have information about how the modems and PTT are configured. Linux example:

Windows example:

Available audio input devices for receive (*=selected):

 0: Microphone (2- C-Media USB Head

Available audio output devices for transmit (*=selected):

 0: Speakers (Realtek High Definiti

 1: DELL U2410-1 (NVIDIA High Defin

 2: Speakers (2- C-Media USB Headph

 3: Realtek Digital Output (Realtek

Channel 0: 1200 baud, AFSK 1200 & 2200 Hz, A+, 44100 sample rate.

Note: PTT not configured for channel 0. (Ignore this if using VOX.)

In this case, “ADEVICE” was not specified, in the configuration file, so there is no “*” indicating the

selected device. The first one, in each group is taken as the default. What you probably want is:

ADEVICE USB

1200 bps is the xxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxx

If not what you were expecting, review the configuration file settings. Check out:

 The wiki https://github.com/wb2osz/direwolf/wiki

https://github.com/wb2osz/direwolf/wiki

~ 41 ~

 Discussion forum https://groups.io/g/direwolf

You might find your answer there. If not, ask the group for help. Your question, and any answers will

help others in the future. Be sure to include a good description any relevant details.

Do not use the github issues section to ask for help. It is for reporting software defects and making

enhancement requests.

8.2 Not receiving anything

Check to see if received audio is getting in at an appropriate level.

Elaborate. Not muted.

8.3 Transmitter turns on but no one receives my signal

Listen with another receiver. Does your signal sound like the others? Adjust the transmit audio level to

be similar to others.

8.4 Transmitter says on

This is usually caused by RF, from the transmitter, getting back into the PTT circuit and it latches on.

Move the radio, and especially the antenna, farther away from the computer.

Put ferrite chokes on the cable to stop the RF from getting back to the computer.

Some people like to use audio transformers to isolate the radio from the computer. An optoisolator is

used for PTT to break up the ground loop.

8.5 System crashes when transmitting

This is a more severe case of the RF getting into your computer.

https://groups.io/g/direwolf

~ 42 ~

8.6 Permission problem with USB Audio Adapter GPIO

Normally, all of /dev/hidraw* are accessible only by root.

$ ls -l /dev/hidraw*

crw------- 1 root root 247, 0 Sep 24 09:40 /dev/hidraw0

crw------- 1 root root 247, 1 Sep 24 09:40 /dev/hidraw1

crw------- 1 root root 247, 2 Sep 24 09:40 /dev/hidraw2

crw------- 1 root root 247, 3 Sep 24 09:50 /dev/hidraw3

Unnecessarily running applications as root is generally a bad idea because it makes it too easy to
accidentally trash your system. We need to relax the restrictions so ordinary users can use these
devices.

If all went well with installation, the /etc/udev/rules.d directory should contain a file called
99-direwolf-cmedia.rules containing:

SUBSYSTEM=="hidraw", ATTRS{idVendor}=="0d8c", GROUP="audio", MODE="0660"

I used the “audio” group, mimicking the permissions on the sound side of the device.

$ ls -l /dev/snd/pcm*

crw-rw----+ 1 root audio 116, 16 Sep 24 09:40 /dev/snd/pcmC0D0p

crw-rw----+ 1 root audio 116, 17 Sep 24 09:40 /dev/snd/pcmC0D1p

crw-rw----+ 1 root audio 116, 56 Sep 24 09:50 /dev/snd/pcmC1D0c

crw-rw----+ 1 root audio 116, 48 Sep 29 18:14 /dev/snd/pcmC1D0p

Notes:

 The double equal == is a test for matching.

 The single equal = is an assignment of a value. In my limited experience, Debian type systems
can accept either = or := but Red Hat type systems recognize only the = form.

If you don’t have /etc/udev/rules.d/99-direwolf-cmedia.rules, create it as shown above and reboot.

Now we observe that the /dev/hidraw*, corresponding to the USB-Audio device now has permissions
that allow us to access it.

$ ls -l /dev/hidraw*

crw-rw---- 1 root audio 247, 0 Oct 6 19:24 /dev/hidraw0

crw------- 1 root root 247, 1 Oct 6 19:24 /dev/hidraw1

crw------- 1 root root 247, 2 Oct 6 19:24 /dev/hidraw2

crw------- 1 root root 247, 3 Oct 6 19:24 /dev/hidraw3

8.7 Baofeng transmitter stays on ¼ second after PTT released

Disable the STE setting. Menu item 35????

~ 43 ~

8.8 DINAH transmit volume mysteriously decreases by itself

The receive carrier operated squelch (COS) is connected to the volume down pin on the USB audio chip.

You need to cut the JP-3 jumper so the COS signal, from the radio, does not shut down the transmit

audio.

