
Building a Better Demodulator for APRS / AX.25 Packet Radio

Part 2, 9600 Baud

John Langner, WB2OSZ

ROUGH DRAFT – May 17, 2015

These are not professionals on a closed course.

You CAN try this at home.

In the first part of this series we discussed 1200 baud audio frequency shift keying (AFSK) where we
switch between two audio frequencies to represent the logic 0 and 1 states. The mismatch between FM
transmitter pre-emphasis and the receiver de-emphasis will cause the amplitudes of the two tones to be
different. This makes it more difficult to demodulate them accurately.

9600 baud operation is an entirely different animal. We don’t use AFSK. Instead, the RF carrier is
shifted between 2 frequencies representing the two logic levels. When the signal comes out of an FM
receiver, the audio should be one of two voltage levels. The demodulator only needs to decide which of
the two levels is present. In the ideal world, it would look something like this.

This is easy to decode. If the signal is positive, call it a logic 1. If negative, call it a logic 0.

It’s not so pretty in the real world after sending a digital signal over the radio. This is a genuine sample
of what we get from a receiver when the signal is fairly strong.

If high frequencies are attenuated, the nice square corners turn into overshoot and ringing. We don’t
reach the full amplitude when the signal is changing at the maximum rate (e.g. 4800 Hz square wave for
9600 baud). If the low frequencies are attenuated, the horizontal lines droop towards the middle
shifting the zero reference level. There are system non-linearities especially if we are not centered in
the FM discriminator bandpass. We can never escape the omnipresent noise.

When the signal gets weaker, this is what we get from the receiver.

The early 9600 baud modem implementations by K9NG, G3RUH, et al were all done in hardware.

 K9NG - Need to find link… ARRL Proceedings of the Computer Networking Conferences 1-4 ?

 G3RUH - http://www.amsat.org/amsat/articles/g3ruh/109.html

 KD2BD -http://www.amsat.org/amsat/articles/kd2bd/9k6modem/

They all have a lowpass filter to attenuate high frequency noise while allowing the desired signal
through. There are a couple different ways to remove any DC bias. The simple way is to use a DC
blocking capacitor on the input. Another is to detect high and low peaks of the signal then set the slicing
level around the midpoint.

I took a slightly different approach in software which has a roughly equivalent end result. An automatic
gain control normalizes the received signal to the same amplitude regardless of the input amplitude and
any DC bias. The result is compared with zero to obtain the final logic 1 or 0.

Lacking any indigenous 9600 baud packet activity, I had to create some of my own by walking around
the neighborhood with a transmitter, in and out of regions with poor radio coverage to make it more
interesting.

lowpass

compare

AGC From receiver

1 or 0

Normalized to range
of -0.5 to +0.5

zero

http://www.amsat.org/amsat/articles/g3ruh/109.html
http://www.amsat.org/amsat/articles/kd2bd/9k6modem/

“PR9” of the receiver “data” connector was connected to the microphone input on a PC. (See
http://wa8lmf.net/miscinfo/MiniDIN6-Packet.pdf for a good description.) The activity was recorded
with a command like this:

arecord -f S16_LE -r 44100 walkabout9600b.wav

It’s a poor substitute for the TNC Test CD, but at least it allows repeatable tests from genuine signals.

atest -B 9600 walkabout9600b.wav

…

…

DECODED[58] WB2OSZ audio level = 83(77)

[0] WB2OSZ>TRSW0P:'c00l"C[/>"5)}=<0x0d>

DECODED[59] WB2OSZ audio level = 84(78)

[0] WB2OSZ>TRSW0P:'c00l"C[/>"5)}=<0x0d>

59 packets decoded in 35 seconds.

The recording is 30 minutes and 44 seconds. We can process it more than 50 times faster than real
time. It is possible to squeeze out a few more frames by using the single bit fix up option which now
works properly for 9600 baud in version 1.2.

atest -B 9600 -F 1 walkabout9600b.wav

…

…

63 packets decoded in 54 seconds.

The data is put through a scrambler before transmission so you would expect the transmitted signal to
look fairly random and symmetrical with the same number of 0 and 1 bits over a longer period. You
might expect the optimal slicing position to be right in the middle.

Not knowing what to expect, I did a little experiment. Instead of a single comparator, with a slicing level
of zero, I ran a bunch in parallel with other small negative and positive slicing points. Each had its own
HDLC decoder and duplicates were removed.

In the screen display, we have the vertical bars and underscores after the audio levels. Each one of
these character positions corresponds to a decoder with a slightly different threshold point to decide if
we have a logic 1 or 0.

| means a frame was received with a correct CRC.
_ means no frame was received.

We use the “-P +” option to mean multiple slicers. The test starts off pretty boring. With a very strong
signal, we all of them decode the signal properly.

atest -B 9600 -P + walkabout9600b.wav

DECODED[1] WB2OSZ audio level = 83(77) |||||||||

[0] WB2OSZ>TRSW1T:'c0Tl"C[/>"5'}=<0x0d>

DECODED[2] WB2OSZ audio level = 83(77) |||||||||

[0] WB2OSZ>TRSW1S:'c0Xl"C[/>"5'}=<0x0d>

http://wa8lmf.net/miscinfo/MiniDIN6-Packet.pdf

…

It gets more interesting when the transmitter is on the edges poor coverage areas and the received
signal becomes weak.

DECODED[30] WB2OSZ audio level = 85(82) __|||||__

[0] WB2OSZ>TRSW0P:'c00l"C[/>"5)}=<0x0d>

DECODED[31] WB2OSZ audio level = 84(81) ______||_

[0] WB2OSZ>TRSW0P:'c00l"C[/>"5)}=<0x0d>

DECODED[32] WB2OSZ audio level = 85(79) ____|____

[0] WB2OSZ>TRSW0P:'c00l"C[/>"5)}=<0x0d>

DECODED[33] WB2OSZ audio level = 84(79) ____|____

[0] WB2OSZ>TRSW0P:'c00l"C[/>"5)}=<0x0d>

DECODED[34] WB2OSZ audio level = 85(79) ______|__

[0] WB2OSZ>TRSW0P:'c00l"C[/>"5)}=<0x0d>

DECODED[35] WB2OSZ audio level = 85(78) ___||||||

[0] WB2OSZ>TRSW0P:'c00l"C[/>"5)}=<0x0d>

…

Notice how smaller numbers of the decoders got a correct result. There is not one that is always better
than the others. As the transmitter heads back home, the signal is stronger and decoding is very reliable
again.

DECODED[65] WB2OSZ audio level = 83(77) |||||||||

[0] WB2OSZ>TRSW0P:'c00l"C[/>"5)}=<0x0d>

DECODED[66] WB2OSZ audio level = 84(78) |||||||||

[0] WB2OSZ>TRSW0P:'c00l"C[/>"5)}=<0x0d>

66 packets decoded in 55 seconds.

When the duplicates are removed, we end up with 66 rather than the previous 59 when always setting
the slicing point at exactly zero.

When the number of frames received by each decoder are added up, this is what we find.

Slice At Frames

 -.08 43
 -.06 49
 -.04 53
 -.02 57
 0 59
 .02 58
 .04 61
 .06 57

0

10

20

30

40

50

60

70

-.08 -.06 -.04 -.02 0 .02 .04 .06 .08

.08 52

This should not imply that slicing at +0.04 is somehow the optimal point. I think it just happened due to
the small sample size.

Final results are:

Number of data slicers Single bit
fix-up

Command
Line
Options

Time,
seconds

Frames
Decoded

One no 35 59

Nine, remove duplicate frames no -P + 55 66

If we attempt to fix up single bit errors, we get a few more:

Number of data slicers Single bit
fix-up

Command
Line
Options

Time,
seconds

Frames
Decoded

One yes -F 1 54 63

Nine, remove duplicate frames yes -P + -F 1 256 68

256 seconds might look like a lot but recall that the recording is 1844 seconds so this is still 7 times
faster than real-time.

Now let’s try a real-time side-by-side comparison.

9600 Baud TNC comparison

Here we compare 9600 baud decoder performance. For this experiment we need:

 Kenwood TM-D710A.

 Software Defined Radio USB dongle. (such as http://www.amazon.com/Receiver-RTL2832U-
Compatible-Packages-Guaranteed/dp/B009U7WZCA/ref=pd_cp_e_0)

 Serial communication cable for D710A (http://www.amazon.com/gp/product/B000068OER is a
lower cost alternative to the official Kenwood PG-5G) – connect to COM port on control panel.

 Radio data cable with 6 pin mini-DIN connector – same type of connector used for PS/2
keyboard and mouse. The data communications cable from the Kenwood PG-5H package does
not appear to be suitable. It uses the PR1 pin. We need the PR9 pin.

 Tee adapter to connect single antenna to two receivers.

Wire up everything as shown below. In this case, we use an indoor antenna so we can get weak signals
with the transmitter only a few blocks away.

Connect the PR9 pin from the DATA connector on the transceiver to the audio input on the computer.
This has wider bandwidth than the PR1 signal or the speaker output.

Don’t waste your time attempting 9600 baud operation with the
Microphone and Speaker connections of the radio. They do not
have the necessary bandwidth.

Most modern mobile rigs have a special “data” connector which is
intended for use with external modems.

USB

Computer

COM1

 TM-D710A

Control Panel

PR9 &
GND

COM

SDR USB dongle

Audio In

http://www.amazon.com/Receiver-RTL2832U-Compatible-Packages-Guaranteed/dp/B009U7WZCA/ref=pd_cp_e_0
http://www.amazon.com/Receiver-RTL2832U-Compatible-Packages-Guaranteed/dp/B009U7WZCA/ref=pd_cp_e_0
http://www.amazon.com/gp/product/B000068OER

After many days of listening, no indigenous 9600 baud activity was heard so I had to generate my own
by walking around the neighborhood with a Kenwood TH-D72A transmitting beacons at the maximum
rate (every 0.2 minute) at EL power.

Prepare D710A

Tune to 144.99 MHz. Use the TNC button on the control panel to select “PACKET” (not APRS) mode.
Enable the COM port with menu 604.

 Using some sort of serial port terminal emulator application, such as minicom, connect to /dev/ttyS0.
Disable any sort of digipeater settings or beaconing so it is not distracted by trying to transmit. We also
don’t want to fry the SDR USB dongle! If the control panel shows PACKET12, change the speed by typing
this command:

 HBAUD 9600

Enable monitoring:

 MONITOR ON

Exit from the terminal application.

Prepare Dire Wolf, first instance

Be sure to use Dire Wolf version 1.2 or later. In this test we are using Linux and the system board
“soundcard” which is the default audio device. Create a configuration file, direwolf.conf-96 with the
following:

CHANNEL 0

MODEM 9600

FIX_BITS 0

9600 baud defaults to N9GH/G3RUH style encoding. The default of “FIX_BITS 1” is turned off so we get
a fair apples-to-apples comparison.

Start up one instance of Dire Wolf like this.

 direwolf -c direwolf.conf-96

Prepare Dire Wolf, second instance

This one will be using an SDR dongle rather than a sound card. Prepare another configuration file,
direwolf.conf-sdr, with the following:

CHANNEL 0

FIX_BITS 0

AGWPORT 8002

KISSPORT 8003

It is not necessary to set the modem characteristics because this will be done on the command line.

Start up the SDR and Dire Wolf in a single command line like this:

 rtl_fm -f 144.982M -o 4 -s 48000 | direwolf -c direwolf.conf-sdr -r 48000 -B 9600 -

Note how we use the command line to specify the audio input device (- at the end) and data rate (-B
9600). Both applications must use 1 audio channel and the same sample rate (48000).

The astute reader might notice the strange frequency 144.982 when we are using 144.99. It seems the
SDR frequency is off a little. This was necessary to get similar + and – swings around the center
frequency. Your results might be different.

WB2OSZ audio level = 142(+130/-131) [NONE] |||||||||

When 144.99 was used, we see an imbalance like this:

WB2OSZ audio level = 144(+98/-163) [NONE] ||||_____

When tuned too far the other way, at 144.977, we see:

WB2OSZ audio level = 140(+149/-109) [NONE] ____|||||

IMPORTANT POINT:

The position of the vertical bars and underscores have much different meanings for 300, 1200, and 9600
baud operation.

 300 Baud HF SSB, multiple tone pairs. (config file: MODEM 300 5@40)

Here we have 5 completely separate demodulators with different tone pairs. Each of
the decoded signal positions corresponds to a different tone pair. Mistuning of an HF
SSB signal will shift the audio frequencies up or down. The position in the middle
indicates proper tuning. Positions toward the left mean the audio tones are too low.

 1200 Baud AFSK, multiple gains for “space” tone. (config file: MODEM 1200 E+)

The character positions correspond to different gain ratios between the mark and space
filters. Toward the right means more gain for the space tone.

 9600 Baud K9NG/G3RUH, multiple slicing levels. (config file: MODEM 9600 +)

In this case, it becomes a tuning indicator. The automatic gain control (AGC) should
remove any DC bias. I think this effect is due to discriminator non linearity on the edges
but need to study this in more detail.

Compare them.

Start up a recording so we can go back and try more experiments with this data at a later time.

arecord -f S16_LE -r 44100 walkabout9600c.wav

Run the “aclients” application with command line arguments like this

aclients /dev/ttyS0=D710 8000=DireWolf-soundcard 8002=DireWolf-SDR

john@hamshack:~$ aclients /dev/ttyS0=D710 8000=DireWolf-soundcard 8002=DireWolf-SDR

Client 0 now connected to D710 on /dev/ttyS0

Client 1 now connected to DireWolf-soundcard on localhost (127.0.0.1), port 8000

Client 2 now connected to DireWolf-SDR on localhost (127.0.0.1), port 8002

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

Totals after 2 minutes, D710 9, DireWolf-soundcard 9, DireWolf-SDR 9

It starts off with all receiving the same thing while the transmitter is near.

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

 WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

Totals after 4 minutes, D710 16, DireWolf-soundcard 17, DireWolf-SDR 14

As the signal gets weaker, the left and right columns start missing some that are in the
middle column.

 WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

 WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

 [b Ps> E P QR A . o H

Totals after 6 minutes, D710 16, DireWolf-soundcard 20, DireWolf-SDR 15

 lrm + . c5 $

 WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

What happened there? It looks like garbage. When receiving 9600 baud we
occasionally see random noise that just happens to have a valid CRC. Remember that
there are only 65536 possible values for the CRC and sometimes random noise will just
happen to match. Below is what it looked like in the first receiving window. At the end
of this test we will subtract these from the totals.

audio level = 104(+142/-151) ___|_____

[0.3]

<0x84>[<0x14>b<0x14><0xb9>Ps><0xbd><0x98><0xaa><0xb1>E<0xe6><0xc5>P<0xa0>QR<0x93><0xf

b>A<0xd7>.<0xfe>o<0xe3>H<0xb5>

 audio level = 105(+142/-158) ________|

[0.8]

lrm<0xb3>+<0xab>.<0x82><0x07><0xd3><0xf2><0x9e>c5<0x80>$<0x93><0xe3><0x11><0x86>

Totals after 8 minutes, D710 16, DireWolf-soundcard 22, DireWolf-SDR 15

Totals after 10 minutes, D710 16, DireWolf-soundcard 22, DireWolf-SDR 15

Totals after 12 minutes, D710 16, DireWolf-soundcard 22, DireWolf-SDR 15

 WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

The transmitter was out of range for a few minutes. When it starts to come back in
range, the middle is the first to start receiving it properly.

Totals after 14 minutes, D710 16, DireWolf-soundcard 23, DireWolf-SDR 15

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

Totals after 16 minutes, D710 18, DireWolf-soundcard 25, DireWolf-SDR 15

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

Totals after 18 minutes, D710 21, DireWolf-soundcard 28, DireWolf-SDR 15

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

 YD p bP && NU 8y ^k 2 I

QmW

Once again, random noise just happened to have a valid CRC. We will subtract this from
the final totals. This is what it looked like in the receiving window:

audio level = 180(+204/-196) ________|

[0.8]

YD<0x97><0x87>p<0xd3>bP<0xb2><0xa0><0x96><0xda>&&<0xb0><0xdc>NU<0x1e>8y<0xbc>^k<0x89>

<0x0c><0xd6><0xe2>2<0x16>I<0x01><0xda><0x82>QmW<0xf0><0xd8>gE<0xf4><0xae><0xfc>.<0xbf

><0xd9><0xb3><0xe5><0xe8><0x9e><0xe6>0<0xe1><0xc0><0x0b><0x15>"<0xe5>A

Totals after 20 minutes, D710 22, DireWolf-soundcard 29, DireWolf-SDR 16

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

 WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

Totals after 22 minutes, D710 28, DireWolf-soundcard 36, DireWolf-SDR 18

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

Totals after 24 minutes, D710 37, DireWolf-soundcard 45, DireWolf-SDR 27

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

WB2OSZ>TRSW1S <UI R>:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}= WB2OSZ>TRSW1S:'c0ol#'[/>"4j}=

As the transmitter returns home, all three can hear it properly.

Total scores, subtracting frames that look like garbage:

 37 + 6 = 43 45 -2 + 6 = 49 27 – 1 + 6 = 32

This is not the most realistic test scenario – only one transmitter is involved - but it does provide useful
data for comparison.

Results

If we give the highest number a score of 100% and scale the others proportionally, the scores are:

 100% Dire Wolf, audio input on system board.

 88% Kenwood TM-D710A

 65% Dire Wolf, software defined radio (SDR) adapter.

The exact percentages should not be taken too seriously because they can be manipulated by the
amount of time spent in the zone where Dire Wolf could receive the signal but the TNC inside the TM-
D710A could not.

The software defined radio did pretty well when you consider that it costs only about $22.

There is potential for possible improvement by:

 Finding better rtl_fm configuration options.

 Using higher quality hardware such as the FUNcube Pro dongle.

 Using other SDR software such as gqrx.

This experiment applies only to 9600 baud operation. Results with 1200 baud could be much different.

There is one remaining mystery. Why doesn’t the data change? When walking around, the GPS location
should change and the beacon content should change. What is going on here? I don’t know. After
getting an initial GPS fix, the HT was inside for quite a while where it would lose the GPS signal. Did the
radio decide to shut off the GPS and use the last known location even after going outside and walking
around?

