
Raspberry Pi SDR IGate 

Last update   11/9/2015   

7/3/2016 – Added note about /etc/modprobe.d/raspi-blacklist.conf. 

9/22/2016 – Clarify IGate server rotate addresses. 

5/28/2017 – Details about frequency calibration. 

Warn against cheap versions with terrible frequency accuracy. 

 

 

It’s easy to build a receive-only APRS Internet Gateway (IGate) with only a Raspberry Pi and a software 
defined radio (RTL-SDR) dongle.  Here’s how. 

Hardware Required 
 

 Raspberry Pi 

I happened to use the model 2 so I can’t say, with certainty that the earlier models would be fast 
enough to keep up.  “top” shows about 93% cpu idle time so the older models are probably 
more than adequate. 

 The procedure here is known to work with the Raspbian operating system.  This was originally 
written for Wheezy and later tested with Jessie.   Some adjustments might be required for other 
operating systems. 

 

 SDR Dongle  

This connects to the USB port and an antenna.  This is the one I used.   

http://www.amazon.com/NooElec-RTL-SDR-RTL2832U-Software-Packages/dp/B008S7AVTC  

There are many others that appear to be equivalent such as 
https://www.adafruit.com/products/1497  

 

I RECOMMEND THAT YOU AVOID THESE.    Things have changed over the past couple years.  The 
earlier (now cheaper) devices have terribly inaccurate frequency references.   Mine is off by 
about 60 Parts Per Million (PPM) which comes out to around 8 kHz on 2 meters or 25 kHz on 70 
cm. 

http://www.amazon.com/NooElec-RTL-SDR-RTL2832U-Software-Packages/dp/B008S7AVTC
https://www.adafruit.com/products/1497


Newer devices now claim to have an accuracy of 1 PPM or even 0.5 PPM and a temperature 
compensated oscillator (TXCO).  I know hams are cheap, but spend the extra $4 on one of the 
newer models and avoid the aggravation of calibration and drifting. 

Lots of great information here:  http://www.rtl-sdr.com/about-rtl-sdr/   

Recommendations on what to buy:   http://www.rtl-sdr.com/buy-rtl-sdr-dvb-t-dongles/  

Software Required 
 

 Dire Wolf  

Install following the instructions in Raspberry-Pi-APRS.pdf. 

You can stop at the section called Interface for Radio.  Here we are using the SDR dongle rather 
than a USB audio adapter. 

Don’t worry about the configuration part because we will build our own configuration file here. 

 RTL-SDR Library  from  http://sdr.osmocom.org/trac/wiki/rtl-sdr  

Install it like this: 

sudo apt-get update 

sudo apt-get install cmake build-essential libusb-1.0-0-dev  

cd ~ 

git clone git://git.osmocom.org/rtl-sdr.git 

cd rtl-sdr 

mkdir build 

cd build 

cmake ../ -DINSTALL_UDEV_RULES=ON -DDETACH_KERNEL_DRIVER=ON 

make 

sudo make install 

sudo ldconfig 

Wheezy: 

I didn’t find it to be necessary, with the software version I was using, but community feedback 
suggests adding the following to /etc/modprobe.d/raspi-blacklist.conf  to prevent the use of 
undesired device drivers. 

 

blacklist dvb_usb_rtl28xxu 

blacklist dvb_usb_v2 

blacklist rtl_2830 

blacklist rtl_2832 

blacklist r820t 

 

http://www.rtl-sdr.com/about-rtl-sdr/
http://www.rtl-sdr.com/buy-rtl-sdr-dvb-t-dongles/
http://sdr.osmocom.org/trac/wiki/rtl-sdr


Jessie: 

The original empty  /etc/modprobe.d/raspi-blacklist.conf  seems to be fine. 

 

Configuration 
 

We need to construct a configuration file for Dire Wolf.  Take the following text and put it into a text file, 
called sdr.conf, in your home directory.    You might find a copy of this file in 
/usr/share/doc/direwolf/examples. 

# 

# Sample configuration for SDR read-only IGate. 

# 

 

# We might not have an audio output device so set to null. 

# We will override the input half on the command line. 

ADEVICE null null 

CHANNEL 0 

 

# Put your callsign in place of xxx below. 

MYCALL xxx 

 

# Pick appropriate servers for your geographical region. 

#  

#       noam.aprs2.net          - for North America 

#       soam.aprs2.net          - for South America 

#       euro.aprs2.net          - for Europe and Africa 

#       asia.aprs2.net          - for Asia 

#       aunz.aprs2.net          - for Oceania 

# 

# Change the following line if you are not in North America. 

IGSERVER noam.aprs2.net 

 

# You also need to specify your login name and passcode. 

# This is the same passcode you would use with any other IGate 

# application.  Contact the author if you can't figure out 

# how to generate the passcode. 

 

IGLOGIN xxx 123456 

 

# That's all you need for a receive only IGate which relays 

# messages from the local radio channel to the global servers. 

 

 
Put your callsign and optional SSID in the two places that have xxx above.  Put your actual passcode in 
place of 123456. 
 



Choosing the IGate Server 
 
Which server should you use?  The current preferred way is to use one of these regional rotate 
addresses: 

 noam.aprs2.net  - for North America 

 soam.aprs2.net  - for South America 

 euro.aprs2.net  - for Europe and Africa 

 asia.aprs2.net   - for Asia 

 aunz.aprs2.net  - for Oceania  
 

Each name has multiple addresses corresponding to the various servers available in that region.  Why 
not just specify the name of one specific server?  This approach offers several advantages: 

 Simplicity – You don’t need to change your configuration as new servers become available or 
disappear. 

 Resilience – If your current server becomes unavailable, another one will be found 
automatically. 

 Load balancing – Picking one at random helps to spread out the load. 
 

Visit http://aprs2.net/ for the most recent information.   

 

Run It 
 

rtl_fm -f 144.39M - | direwolf -c sdr.conf -r 24000 -D 1 - 

Note the “-“ at the end of the line which means read audio from stdin.  Alternatively this could have 
been done in the configuration file, using either of these forms: 

ADEVICE stdin null 

ADEVICE - null 

 

You should now have a functioning receive only IGate.   

 

9600 Baud Operation 
 

I found this to work well for 9600 baud. 

rtl_fm –p 62 -f 144.39M -o 4 -s 48000 | direwolf -c sdr.conf -r 48000 -B 9600 – 

 

http://aprs2.net/


The default 24000 sample rate is too low for reliable 9600 baud operation so we want to increase it to 
48000 or maybe even a little higher.  Obviously, both applications need to use the same audio sample 
rate.   Results seemed to be better with the “-o 4” option but it wasn’t a very scientific test. 

I would like to hear from anyone who has done experimentation with different sampling options and 
came up with something that works better. 

 

Automatic Startup on Reboot 
 

You might be tempted to put the command line above into /etc/rc.local.   It’s not that simple and there 
are some disadvantages.  First, it runs as root.  It’s best to avoid running as root, when possible, because 
it’s harder to accidentally trash your system.  When /etc/rc.local is running, $PATH is set to 
/sbin:/usr/sbin:/bin:/usr/bin so it wouldn’t find anything in /usr/local/bin.  You would need to specify 
the full path.  The current working directory and $HOME are both / so you would need to put the 
configuration file there or specify a different location.  The text output, for troubleshooting, is not 
readily available.  Finally, it there is a failure, it won’t restart until the next reboot. 

My suggestion would be to modify the included dw_start.sh script so that it also runs rtl_fm.   Look for 
this line and remove the # at the beginning. 

              #DWCMD="bash -c 'rtl_fm -f 144.39M - | direwolf -c sdr.conf -r 24000 -D 1 -'" 

Run “crontab –e” to edit your crontab file.   Assuming that you are running as user “pi” and you have a 
copy of dw-start.sh in the home directory, add a line like this: 

* * * * *  /home/pi/dw-start.sh  >/dev/null  2>&1 

This script will run once per minute.  Dire Wolf is started automatically if not running already.  If it 
crashes, or is terminated for any other reason, it will be restarted.  A log of restarts can be found in 
/tmp/dw-start.log. 

The User Guide contains more discussion about automatic start up. 

Further Reading 
 

Additional information can be found in the documentation directory:   
https://github.com/wb2osz/direwolf/blob/dev/doc/README.md   

 Raspberry-Pi-SDR-IGate.pdf 

The most recent version of this document. 

 Raspberry-Pi-APRS.pdf 

https://github.com/wb2osz/direwolf/blob/dev/doc/README.md


The Raspberry Pi has some special considerations that make it different from 

other generic Linux systems. Start here if using the Raspberry Pi, Beaglebone 

Black, cubieboard2, or similar single board computers. 

 User-Guide.pdf 

This is your primary source of information about installation, operation, and 
configuration. 

 Successful-APRS-IGate-Operation.pdf 

Dire Wolf can serve as a gateway between the APRS radio network and APRS-IS 
servers on the Internet. 

This explains how it all works, proper configuration, and troubleshooting. 

 

  



Calibration 
 

The older / cheaper RTL SDR dongles might be several kHz off and drift even more with temperature 
variations. 

In one test, I found that it worked best when I specified a frequency 8 kHz lower than the desired 
frequency.  That translates into about 56 parts per million (PPM).    

As I mentioned near the beginning, there are now devices that claim to have 1 PPM or better accuracy 
and temperature compensated oscillators.  If you are buying a new one, spend the extra $4 and avoid 
the aggravation that follows. 

There are multiple ways to figure out the frequency error. 

 

SDR# 
 

Tune into a station of known frequency, and select the gear icon near the top left.   Adjust the 
“frequency correction” setting until the signal strength peak lines up with the desired frequency.   I used 
a nearby weather station at 162.525 MHz, figuring this would be more accurate than most amateur 
radio transmissions.  The best setting turned out to be 61 or 62 PPM.  That’s pretty close to my trial & 
error estimate. 

 

Easy Way 
 

“rtl_test” can give us a crude measurement, based on the computer’s clock.  

$ rtl_test -p60 

Found 1 device(s): 

  0:  Realtek, RTL2838UHIDIR, SN: 00000001 

 

Using device 0: Generic RTL2832U OEM 

Found Rafael Micro R820T tuner 

Supported gain values (29): 0.0 0.9 1.4 2.7 3.7 7.7 8.7 12.5 14.4 15.7 

16.6 19.7 20.7 22.9 25.4 28.0 29.7 32.8 33.8 36.4 37.2 38.6 40.2 42.1 

43.4 43.9 44.5 48.0 49.6 

Sampling at 2048000 S/s. 

Reporting PPM error measurement every 60 seconds... 

Press ^C after a few minutes. 

Reading samples in async mode... 

real sample rate: 2048132 current PPM: 65 cumulative PPM: 65 

real sample rate: 2048124 current PPM: 61 cumulative PPM: 63 

real sample rate: 2048129 current PPM: 63 cumulative PPM: 63 

real sample rate: 2048130 current PPM: 64 cumulative PPM: 63 

real sample rate: 2048132 current PPM: 65 cumulative PPM: 63 

real sample rate: 2048130 current PPM: 64 cumulative PPM: 64 

real sample rate: 2048131 current PPM: 64 cumulative PPM: 64 



real sample rate: 2048130 current PPM: 64 cumulative PPM: 64 

real sample rate: 2048129 current PPM: 63 cumulative PPM: 64 

real sample rate: 2048125 current PPM: 61 cumulative PPM: 63 

real sample rate: 2048138 current PPM: 68 cumulative PPM: 64 

 

That’s quite close to the SDR# result so that seems good. 

https://medium.com/@rxseger/sdr-calibration-via-gsm-fcch-using-kalibrate-and-lte-cell-scanner-on-rtl-
sdr-and-hackrf-193a7fb8a3eb  is not fond of that and concentrates on using “kalibrate.” 

 

More Accurate Way? 
 

For a more accurate assessment, we will  attempt to use “kalibrate” which looks for cell phone towers 
(that have very strict frequency standards) and calculates an error from that.   

sudo apt-get install automake 

sudo apt-get install libtool 

sudo apt-get install libfftw3-dev 

sudo apt-get install librtlsdr-dev 

sudo apt-get install libusb-1.0.0-dev 

git clone https://github.com/steve-m/kalibrate-rtl 

cd kalibrate-rtl 

./bootstrap 

./configure 

make 

sudo make install 

 

Now run it.  You might have to try different bands until you find something. 

$ kal -v -s GSM-R 

Found 1 device(s): 

  0:  Generic RTL2832U OEM 

 

Using device 0: Generic RTL2832U OEM 

Found Rafael Micro R820T tuner 

Exact sample rate is: 270833.002142 Hz 

kal: Scanning for E-GSM-900 base stations. 

channel detect threshold: 12828.180924 

E-GSM-900: 

 chan: 991 (928.4MHz + 8.456kHz) power: 14547.02 

 

After finding a nearby station, or two, we can we can get a measurement of how far off we are. 

$ kal -c 991  

Found 1 device(s): 

  0:  Generic RTL2832U OEM 

 

Using device 0: Generic RTL2832U OEM 

Found Rafael Micro R820T tuner 

https://medium.com/@rxseger/sdr-calibration-via-gsm-fcch-using-kalibrate-and-lte-cell-scanner-on-rtl-sdr-and-hackrf-193a7fb8a3eb
https://medium.com/@rxseger/sdr-calibration-via-gsm-fcch-using-kalibrate-and-lte-cell-scanner-on-rtl-sdr-and-hackrf-193a7fb8a3eb
https://github.com/steve-m/kalibrate-rtl


Exact sample rate is: 270833.002142 Hz 

kal: Calculating clock frequency offset. 

Using E-GSM-900 channel 991 (928.4MHz) 

average   [min, max] (range, stddev) 

+ 6.523kHz  [-1040, 8576]  (9615, 2895.904541) 

overruns: 0 

not found: 828 

average absolute error: -7.026 ppm 

 

$ kal -c 1002 

Found 1 device(s): 

  0:  Generic RTL2832U OEM 

 

Using device 0: Generic RTL2832U OEM 

Found Rafael Micro R820T tuner 

Exact sample rate is: 270833.002142 Hz 

kal: Calculating clock frequency offset. 

Using E-GSM-900 channel 1002 (930.6MHz) 

average   [min, max] (range, stddev) 

- 33.280kHz  [-34333, -24720]  (9613, 2772.821289) 

overruns: 0 

not found: 652 

average absolute error: 35.762 ppm 

 

$ kal -c 963 

Found 1 device(s): 

  0:  Generic RTL2832U OEM 

 

Using device 0: Generic RTL2832U OEM 

Found Rafael Micro R820T tuner 

Exact sample rate is: 270833.002142 Hz 

kal: Calculating clock frequency offset. 

Using GSM-R-900 channel 963 (922.8MHz) 

average   [min, max] (range, stddev) 

- 4.631kHz  [-33793, 10213] (44006, 15451.044922) 

overruns: 0 

not found: 48 

average absolute error: 5.018 ppm 

 

Based on that,  is it  -7  or  36  or  5?   None are close to earlier measurements. 

The alleged better technique was a big disappointment (to put it mildly) in my limited experience.  Your 
mileage may vary. 

 

Automatic Method 
 

Here is a script that will perform automatic calibration periodically:  
https://github.com/khaytsus/direwolf-init    

 

https://github.com/khaytsus/direwolf-init


Let’s try it and see what happens.  The strongest weather station around here is at 162.525 MHz. 

$ rtl_power -c .1 -f 162.515M:162.535M:64 -i 2 -g 10 -e 10m noaa.csv 

$ findppm.pl 0 162525000 noaa.csv 

Best PPM is -29 

 

That doesn’t make sense. 

What if we start off with our earlier estimate and see if we can refine it with this? 

$ rtl_power -c .1 -f 162.515M:162.535M:64 -i 2 -g 10 -p 60 -e 10m noaa2.csv 

$ findppm.pl 60 162525000 noaa2.csv 

Best PPM is 31 

 

I don’t know what to make of that. 

 

Calibration - Conclusion 
 

My initial trial & error guess for best results gave me about 56.  Rtl_test came up with 63 or 64.  SDR# 
says 61 or 62.  The others are all over the place and don’t make sense.   I’m going with 62. 

Once you have determined the frequency error, in PPM, add it to the “rtl_fm” command with the “-p” 
option.  e.g. 

$ rtl_fm -p 62 -f 144.39M - | direwolf -c sdr.conf -r 24000 -D 1 - 

 

Or you could just buy newer device, with better accuracy, and avoid the aggravation and wasted time 
struggling with it. 

 

 

 


